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By making the rotating wave approximation10, we ®nd equations
with analytic solutions for the resonant case. The conductivity
induced by a rectangular pulse of duration t is taken to be
proportional to (1±r11(t)), the total number of donors excited
out of the ground state at the end of the terahertz pulse. The solid
curves in Fig. 3a are a least-squares ®t of the data to this analytic
solution. The ®tted curves reproduce the essential features of the
data.

The inset to Fig. 3a shows the Rabi frequency and damping rates
extracted from the ®ts as functions of ETHz. If we assume a dipole
matrix element of 10 nm, then the Rabi frequency at a terahertz ®eld
of 3:1 3 104 V m 2 1 is predicted to be 4:7 3 1011 rad s 2 1, well within
experimental error of the observed value. The ®tted Rabi frequency
increases roughly linearly with ETHz, but with a non-zero intercept.
The magnetic ®eld was tuned to be resonant at the highest ETHz. The
non-zero intercept is consistent with the detuning that results from
the shift in the resonance frequency with ETHz (see Fig. 3b).

We calculated the curves in Fig. 4b by ®xing the model parameters
with a ®t to the on-resonance curve, and varying only the detuning
for the off-resonance curves. The frequency of the oscillations in the
theoretical curves increases with increasing detuning, while the
amplitude decreases, as observed in the experiment; however, we
note that the amplitude decreases much more quickly with detuning
in the experiment.

The mechanisms that damp the observed Rabi oscillations are
extrinsic to the model qubits, and much faster than predicted
intrinsic decoherence. The value of the dephasing rate g2 at the
lowest terahertz ®eld is, within experimental error, the same as that
obtained from the linear spectra, 60 3 109 s 2 1. This regime is
inhomogeneously broadened by a background disorder potential16.
As the terahertz ®eld is increased, the inset to Fig. 3a shows g2 and g3

increasing, consistent with a photoionization process that couples
the 2p+ state to a higher excited state. Intrinsic decoherence of
motional states of hydrogenic impurities is expected to be limited
by very weak coupling to acoustic phonons3,22±24. From table III of
ref. 23, the contribution of acoustic-phonon coupling to the line-
width (full-width at half-maximum, FWHM) of the 1s±2p (m � 0)
transition at zero magnetic ®eld is predicted to be
< 10 2 3¥2=�ra3v2� < 0:2 meV (where ¥ � 8:6 eV is the deformation
potential, a � 10 nm is the Bohr radius, r � 5;300 kg m 2 3 is the
density, and v � 3;700 m s 2 1 is the velocity of sound, correspond-
ing to an intrinsic decoherence rate g2 < 2 3 108 s 2 1. Such deco-
herence rates, more than 1,000 times slower than typical Rabi
frequencies measured here, would enable more complex manipula-
tions of the model qubits. Future experiments will attempt to
measure the intrinsic decoherence time of 2p (m � 2 1) hydro-
genic donor states, which are well below the continuum and hence
robust to ionization by photons and phonons. M
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In the light of the tremendous progress that has been made in
raising the transition temperature of the copper oxide super-
conductors (for a review, see ref. 1), it is natural to wonder how
high the transition temperature, Tc, can be pushed in other classes
of materials. At present, the highest reported values of Tc for non-
copper-oxide bulk superconductivity are 33 K in electron-doped
CsxRbyC60 (ref. 2), and 30 K in Ba1-xKxBiO3 (ref. 3). (Hole-doped
C60 was recently found4 to be superconducting with a Tc as high as
52 K, although the nature of the experiment meant that the
supercurrents were con®ned to the surface of the C60 crystal,
rather than probing the bulk.) Here we report the discovery of
bulk superconductivity in magnesium diboride, MgB2. Magneti-
zation and resistivity measurements establish a transition tem-
perature of 39 K, which we believe to be the highest yet
determined for a non-copper-oxide bulk superconductor.

The samples were prepared from powdered magnesium (Mg;
99.9%) and powdered amorphous boron (B; 99%) in a dry box.
The powders were mixed in an appropriate ratio (Mg:B = 1:2),
ground and pressed into pellets. The pellets were heated at 973 K
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under a high argon pressure, 196 MPa, using a hot isostatic pressing
(HIP) furnace (O2Dr.HIP, Kobelco) for 10 hours. Powder X-ray
diffraction was performed by a conventional X-ray spectrometer
with a graphite monochromator (RINT-2000, Rigaku). Intensity
data were collected with CuKa radiation over a 2v range from 58 to
808 at a step width of 0.028.

Figure 1 shows a typical X-ray diffraction pattern of MgB2 taken
at room temperature. All the intense peaks can be indexed assuming
an hexagonal unit cell, with a = 3.086 AÊ and c = 3.524 AÊ . Figure 2
shows the crystal structure of MgB2 (ref. 5), of which the space
group is P6/mmm (no.191). As shown in Fig. 2, the boron atoms are
arranged in layers, with layers of Mg interleaved between them. The
structure of each boron layer is the same as that of a layer in the
graphite structure: each boron atom is here equidistant from three
other boron atoms. Therefore, MgB2 is composed of two layers of
boron and magnesium along the c axis in the hexagonal lattice.

Magnetization measurements were also performed with a SQUID
magnetometer (MPMSR2, Quantum Design). Figure 3 shows the
magnetic susceptibility (x = M/H, where M is magnetization and
H is magnetic ®eld) of MgB2 as a function of temperature, under

conditions of zero ®eld cooling (ZFC) and ®eld cooling (FC) at
10 Oe. The existence of the superconducting phase was then con-
®rmed unambiguously by measuring the Meissner effect on cooling
in a magnetic ®eld. The onset of a well-de®ned Meissner effect was
observed at 39 K. A superconducting volume fraction of 49% under
a magnetic ®eld of 10 Oe was obtained at 5 K, indicating that the
superconductivity is bulk in nature. The standard four-probe
technique was used for resistivity measurements.

Figure 4 shows the temperature dependence of the resistivity of
MgB2 under zero magnetic ®eld. The onset and end-point transition
temperatures are 39 K and 38 K, respectively, indicating that the
superconductivity was truly realized in this system. M
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Figure 1 X-ray diffraction pattern of MgB2 at room temperature.
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Figure 2 Crystal structure of MgB2.
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Figure 3 Magnetic susceptibility x of MgB2 as a function of temperature. Data are shown

for measurements under conditions of zero ®eld cooling (ZFC) and ®eld cooling (FC) at

10 Oe.
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Figure 4 Temperature dependence of the resistivity of MgB2 under zero magnetic ®eld.
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